
AMATEUR RADIO APPLICATIONS SOFTWARE FOR THE APPLE II

BY C.H. GALFO - WB4JMD

- SOFTWARE PRODUCTS DESCRIPTION -

 1) COMMUNICATIONS PACKAGE

 2) SLOW-SCAN TELEVISION PACKAGE

 | |
 | SOFTWARE AVAILABLE EXCLUSIVELY FROM: |
 | |
 | Dr. C. H. Galfo |
 | 2229 McLaughlin Aye. #4 |
 | San Jose, CA 95122 |
 | |
 |___|

COMMUNICATIONS PACKAGE

 This complete package contains the most sophisticated and versatile radio
communications software available for any microcomputer system to date. It allows
your Apple II to communicate in any of three codes: Morse, Baudot, or ASCII, with
a minimum amount of external hardware required. The program resides in less than
8K of memory and consists of a 6K BASIC executive and a 2K set of machine code
utilities which handle all real-time tasks such as display, code conversion, and
I/O. Some features include:

-> Live keyboard - Text can be prepared for transmission while either receiving
or transmitting.

-> 3 field display - Text is placed on the screen in any of 3 fields which all
scroll separately. Received text is formatted for a 16 line
display. Text being prepared for transmission is shown in a
5 line field. Text being transmitted is shown in a one line
field.

-> Variable size text buffer - This means you can prepare a lot of text and not run
out of memory. The buffer space available is about 6K (charac-
ters) for a 16K system.

-> User-defined text strings (stored messages) - Memory not used for the text buffer
is allocated to stored messages. Any number of messages can be
defined. Since their definitions appear in the BASIC language
program, they are easily modified and saved on tape as part of
the program.

-> Stored text can be inserted anywhere in the text you prepare - This feature can
eliminate a lot of repetitive typing during a QSO. Let your
computer fill in the details while you continue to type!

-> Automatic 72 character line formatting (on RTTY) - You don’t have to worry
about putting in a CR, LF for the other guy’s printer. Word
wrap-around is used so that short words are not split at the
end of a line.

-> Eight special control functions allow complete control of your transceiver,
program modes, transmit speed and aid in minor editing of your
text.

-> Code speeds are continuously variable over a wide range - (CW receive is adap-
tive over a 3 to 1 range)

-> Automatic CW identification - Your station call can be sent in CW automatically
at the end of a RTTY transmission.

-> Many new disk-features and buffered receive.

-> Hardware required - Signals received off-the-air must be demodulated using the
usual hardware required for RTTY operation. For CW, a sample
circuit is included in the documentation. The computer output
can be used to directly modulate a CW or FSK keying circuit.
I/O is all via the on-board (game) connector. Four separate
lines are used for RTTY & CW in and out. There is an output to
control the T/R line of your station.

-> Price – (on cassette with documentation) $20.00 On disk: $30.00

 April 1978
 Revised: Jan. 1979
 Revised: March 1980

Digitized version: April 2015

APPLE II AMATEUR RADIO COMMUNICATIONS PACKAGE

 COPYRIGHT (c) 1978, C. H. GALFO – WB4JMD
 COPYRIGHT (c) 1980, C. H. GALFO – WB4JMD/6

 All rights reserved under U.S. TXu 18-544

 Digitized from printed document with
 minor edits for readability by Mike Willegal.

 C. H. Galfo has granted permission to reproduce and
 distribute

-DOCUMENTATION-

 This documentation describes the software package provided on cassette or
disk which allows an Apple II microcomputer to be used for communications on the
amateur radio bands. Selection of the code to be used (Morse, Baudot or ASCII),
as well as the speed (baud rate) provides full flexibility for the user’s vari-
ous applications. I/O is all handled through the Apple on-board (game) connector.
These lines are used to key the transmitter, receive signals which the user has
demodulated, and control the T/R state of the station transmitter.
 The program is provided in two parts: a machine language set of subroutines
that handle all real-time tasks and code conversion, and a BASIC language execu-
tive which provides a conversational interface between you and the computer. The
program is loaded from tape in two parts, the machine language section first, then
the BASIC:

 PROGRAM LOADING: (Begin in the monitor – i.e. RESET first)

 1) *800.FFFR (return) (wait for one bell and no ERR)
 2) *CTRL-B (return) (CTRL-B to BASIC)
 (stop tape if 2 and 3 take you
 3) >LOAD (return) longer than 8 seconds)
 (wait for two bells and no ERR)

If you have purchased this package on Apple II floppy disk, the program can be
loaded and run by the disk command: >RUN HAM . The machine code segment is auto-
matically loaded from disk as needed. The file ‘HAM.V4.SAV’ contains the machine
code section. After proper loading, the program package is started with the ‘RUN’
command from BASIC. When started, two text buffers are allocated automatically by
the program; one buffer holds the text that you transmit (Xmit buffer) and the other
holds the text that you receive. The size of the transmit (Xmit) buffer determines
the maximum number of characters that you can type ahead of the text being pre-
pared for transmission. Memory not allocated for the buffers is free for stored
text, which is kept in the BASIC program work-space. The size of these buffers (in
bytes) is reported to you when the program starts.

 In order to use this package for communications, the proper hardware must be
interfaced to the Apple I/O lines. A good TU and FSK circuit are required for
RTTY. There are numerous articles and books on radio teletype which can help you
get started, if you are not already active on RTTY, since it is impossible for me
to do justice to communications techniques in this documentation. For CW opera-
tion, a threshold detector and transmitter keying circuit are necessary for on-
the-air applications. I have included a sample circuit for CW send and receive
with this package.
 After the program is started, it goes into an interactive mode of operation
where several questions must be answered (only the first letter of a word is nec-
essary for non-numeric answers). After you choose Morse or RTTY, an additional
question is asked concerning “Word” or “Character” mode. If you answer “Word”
then, when transmitting, the text buffer is allowed to empty to the last complete
word typed, which is not released until you have finished typing it. This is use-
ful if you intend to operate at a speed that is greater that your typing speed,
since it allows you to edit that word if the transmission catches up with you. In
the “Character” mode the xmit buffer can empty up to the last character typed. The
transmission speed is determined by your answer to another question. When using
Morse code, the answer should be between 2 and 125 wpm and this number not only
determines the sending speed but also the optimum receiving speed. The actual re-
ceiving routine for Morse will adapt to the received code speed if it is within a
factor of 3 of the sending speed. When operating RTTY, the sending and receiving
rate can be set anywhere between 32 and 300 baud. When using RTTY on the air, you
should note that only Baudot code is currently authorized by the F.C.C. for use on
the ham bands, and furthermore, only the standard speeds of 45 baud (60 wpm), 50
baud (67 wpm), 57 baud (75 wpm), and 74 baud (100wpm) are allowed. In addition to
setting the RTTY communications speed, you will be asked what fill character you
would like to use. A fill character is sent whenever the transmit buffer is empty,
and you can choose either of the two non-printable characters or not use a fill
character at all, in which case the steady mark condition is maintained when the
buffer is empty.

 Receive

 When all questions are answered, the program will go into its receive mode
where it is ready to copy signals present on the input lines, as well as allow you
to prepare text for transmission at the same time. The screen is now divided into
3 separate fields, the top 16 lines being the received text display area, a single
line field near the center of the screen is active during a transmission and shows
the present character being transmitted, as well as the next 38 to be sent, and,
the last 5 lines at the bottom of the screen show the text that you are placing
into the text buffer for transmission. These 3 fields individually scroll, as text
is added to each. The text received is automatically aligned using word “wrap-
around” for the 40 character line.

Transmit

 A transmission is started and stopped using the ESC key which toggles between
receiving and sending. When transmitting, you can continue to enter text on the
keyboard, as when receiving. If the buffer empties, the transmission of charac-
ters will stop but the program will remain in the transmit state until an ESC is
typed which will return it to the receive state. There is another way to end a
transmission which does not require you to manually end the transmission. This
is accomplished by adding a CTRL-C (end of text) after you have finished preparing
your transmission. When a CTRL-C is encountered in the text, the program will go
into its receive mode automatically (note: on RTTY, a CW ID will be added before
switching to receive). The text that you prepare does not require carriage-re-
turns (CR) or line-feeds (LF) to be entered since they are automatically generated
to give a 72 character standard communications line width in a format that does
not split short words (word wrap-around) when operating RTTY. Also a CR, LF, LTRS
sequence is placed at the beginning of every transmission as is common in RTTY op-
eration. You can also enter or leave the transmit mode via a CTRL-T or a CTRL-Q
as explained in the next section.

Control Characters

 There are many special control characters which are active when you are en-
tering text. The following control characters give an immediate response when
typed:

 ESC Toggles between receive and transmit mode.

 CTRL-B Typing a CTRL-B allows you to execute any of six sub-commands.
These are activated by typing their first letter.

 CLEAR – Clears a screen or buffer.
 GET – Gets text from a disk file and places it in a buffer.
 PUT – Puts text from a buffer into a disk file.
 DIR – Displays a disk directory (catalog).
 SYS - Displays current system status.
 EXIT – Exits the program to BASIC. You can reenter
 properly by using: >”GOTO 0”.

 CTRL-E Returns to interactive mode and asks for a definition of the
stored message keyword MSG. Enter the text (<128 characters)
and terminate with a RETURN. See the next section on the use
of stored text keywords.

 CTRL-H (<- on the Apple keyboard) Backspaces cursor and deletes a
character from the text buffer. Those characters that can’t be
deleted, (i.e. have already been sent) result in a “?” on the
screen and 8 dits sent on CW.

 CTRL-L Typing a CTRL-L (only active when in receive) calls in the
contact logging subsystem from disk. All buffers are pre-
served.

 CTRL-Q Similar to the ESC key except that your main Xmit buffer is not
used as the source of text when you enter the transmit mode.
Text is taken directly from the keyboard which is buffered by
an invisible 512 byte “Quick answer” buffer.

 CTRL-R See note 1 of communications package notes.

 CTRL-S Allows selection of any of five sub-commands:

 SPD - Use to change your code speed.
 CODE - Use to select Morse, Baudot or ASCII.
 MODE - Use to set Word or Character xmit modes.
 FILL - Use to change your RTTY fill character.
 INVERT - Allows you to receive inverted RTTY signals.

 Toggles between Normal and Invert as shown by the
 (TUNE indicator).

 CTRL-T Similar to ESC except that your transmission starts at the
beginning of your last transmission instead of at the end as
with ESC. This is useful in repeating a transmission. Cau-
tion: Do not use inserted text keywords in CTRL-T repeated
text.

 CTRL-U (-> on Apple keyboard) Moves the cursor forward and copies
characters to the text buffer.

In addition to the control characters that are listed above, the following control
characters are added to the text buffer when typed and the action of each is ex-
plained:

 CTRL-A Used as delimiter for an inserted text keyword as explained in
the next section.

 CTRL-C (ETX) Acts as a end-of-text marker in the text buffer. When
encountered in text, the transmission is terminated. Also
adds a CW ID and CR,LF,LTRS sequence when operating RTTY.

 CTRL-I On RTTY only, a CTRL-I will send a CW ID followed by a pair of
CR, LF, LTRS sequences and then continue with the transmis-
sion.

In Morse and Baudot there are special characters and sequences of characters that
do not directly translate into ASCII. The following code conversions are made by
the software:

 MORSE: # - END OF MESSAGE .-.-.
 $ - END OF QSO ...-.-
 % - END OF WORK ..-.-
 & - GO AHEAD -.--.
 * - END OF LINE .-.-
 + - WAIT .-...
 ! - BREAK -...-.-

 BAUDOT: # -> SHIFT-H (STOP)
 CTRL-F -> CR ONLY
 CTRL-J -> LF, LTRS SEQUENCE
 CTRL-M -> CR, LF, LTRS SEQUENCE
 CTRL-B -> LTRS SHIFT
 CTRL-W -> FIGS SHIFT

 Inserting Stored Text into your Transmission

 The flexibility in inserting predefined text “messages” into your transmission
is probably the most unusual feature offered by this software package. A stored
message (a sentence or phrase) is defined in the BASIC language section of the pro-
gram as a string of up to 255 characters (a limitation imposed by BASIC). The
name of each string, e.g. QTH$, NAME$, ETC$, is used by the software as its corre-
sponding mnemonic “keyword”. The keyword that you will use to reference the text
in these strings is the same as the BASIC string variable name without the $ on
the end. Thus, the string QTH$ is referred to by simply the keyword QTH. When a
keyword is encountered in the transmit text, the stored text in the corresponding
string is substituted. To prevent the program from interpreting all your words as
possible keywords for stored text, the keywords that you enter into the transmit
buffer must be surrounded by a pair of CNTL-A’s. The example that follows on the
next page should make this clear:

Define the keyword TNX: (note: should be after line 5000)

 5500 DIM TNX$(20) (Strings must be dimensioned in BASIC)
 5510 TNX$ = “THANKS FOR THE CALL,” (Define the text)

In your transmission, you want to refer to the TNX$ message, so you type:

 OK, (^A)THX(^A) OM. (^A = CTRL-A key)

The screen will echo

 OK, TNX OM. (TNX is echoed in inverted video)

Now, when the sentence is transmitted it is expanded:

 OK, THANKS FOR THE CALL, OM.

There are two special keywords used by the software. They are ID and MSG. ID
should be defined with your call letters so that a proper CW identification will
be generated by a CTRL-C or CTRL-I on RTTY. The text in the keyword MSG can be
changed by a CTRL-E without having to stop the program completely. You should
change ID to your own call-sign and start adding your own definitions for your QTH,
NAME, etc. I have included definitions of the keywords: ID, QTH, RY, & BRAG, the
latter two being defined with the string concatenation feature available in Apple’s
integer BASIC. To make your changes permanent, the program package should record-
ed on disk (or tape). This is accomplished:

Tape: (start in monitor – i.e. reset first.)

 1) *800.FFFW (return) (saves machine code segment)
 2) *CTRL-C (return) (back to BASIC – no scratch)
 3) >SAVE (return) (saves BASIC & your stored messages)

Disk: (Apple DOS booted already.)

 1) Exit the program (CTRl-B E)
 2) >SAVE HAM (return)

-Program Specifications-

Morse: Dot-Dash Ratio: 1:3 XMIT – 1:2 to 1:4 RCV
 Character Spacing: 3 dots XMIT – 2 to 4.5 dots RCV
 Word Spacing: 5 dots XMIT – greater than 4.5 dots RCV
 Speed: 2 - 125 wpm

RTTY: Num. of stop bits: 2 XMIT – 1 or greater RCV
 Num of data bits: 5 (Baudot) or 8 (ASCII)
 Carriage shift: “Unshift on space” (Baudot RCV only)
 Non Print-over: CR ignored on RCV. (new line of LF only)
 Speed: 32-300 baud (continuous)

 .-.-. .-.-. .-.-. .-.-. .-.-. .-.-. .-.-.

- AMATEUR RADIO COMMUNICATIONS PACKAGE -

- MEMORY MAP & I/O CONVENTIONS -

 Address (Hex) Description

 0000 - 0049 Page zero storage (shared with Apple monitor).

 004A – 00FF Page zero used by BASIC.

 0100 – 01FF 6502 Stack.

 0400 – 07FF Video screen - character map.

 0800 – 0AFF Morse receive/send and keyboard input routines.

 0B00 – 0B5F Constant data and small buffer.

 0B60 – 0BBF Baudot conversion table.

 0BC0 – 0BFF Morse conversion table.

 0C00 – 0FFF RTTY receive/send and disk I/O routines.

 1000 – LOMEM All text buffers.

 LOMEM – HIMEM BASIC program workspace and stored messages.

INPUT / OUTPUT

 SW0 – RTTY input signal (mark = High).

 SW2 – CW (Morse) input signal (key-up = High).

 AN0 – RTTY output signal (mark = High).

 AN1 – T/R control line (goes low when transmitting).

 (setting variable “DELAY” to a number N in BASIC program will
 cause the transmission to be delayed N ms after this line goes
 low).

 AN2 – CW (Morse) output signal (key-up = High).

 (AN2 will go low during a RTTY transmission – This output is
 used for a CW ID on RTTY)

LOGGING SYSTEM
 This brief documentation describes the BASIC program called ‘HAM.LOG’ which
can be used as a stand-alone program or as a subsystem when operating with the
communications package. When called as a subsystem (with a CTRL-L) all your oper-
ating parameters are preserved (i.e. the contents of both buffers, mode of opera-
tion, code speed, etc.). You should find that the logging system is very easy to
use, since it is written as a menu driven, conversational program. It basically
allows you to keep your station log on the disk. Each disk file is referred to as
a log book. You can have as many log books as you wish (book numbers 1 to 32767)
and each log book can have as many entries in it as YOU wish (the limit is the
size of the disk - about 1250 entries). For the purpose of printing, each log
book can be thought of as having pages, with 50 log entries on each page. The log
entries are kept in a format that is very similar to the standard ARRL log form.
A sample print-out of a log is shown below:

 LOGGING SYSTEM LOG BOOK 999 PAGE 1

--
START STATION HIS UR FREQ. EMS. PWR. END
TIME CALL SIGN RST RST MHZ. TYP. WATT TIME QTH AND OTHER DATA NAME
--
<<<< SEPT. 17, ‘76 >>>>
2207 WA4AJF 59 59 3.947 A3J 90 2235 N. VA. JAY
2225 WA9NEW/4 59+ 59 3.947 A3J 90 2232 NEWPORT HEWS, VA. BRUCE
2225 K4KDJ -- -- 3.947 A3J 90 2245 BLACKSBURG, VA. VA. TECH
2225 WB4DRB 57 58 3.947 A3J 90 2310 ARLINGTON, VA. MARC
2225 K4VWK 59 59 3.947 A3J 90 2310 - SCOTT
<<<<SEPT. 22 >>>>
0146 W8VV 589 589 3.628 Fl 150 0212 GRAND RAPIDS, MICH CAL
110S WA4RIV 56 56 7.220 A3J 90 1120 MIAMI, FLA. DICK
112S W0LMP 58 58 3.894 A3J 90 1205 BOONE, IOWA HARROLD
<<<<NOV. 14 >>>>
1540 PJ3AR 589 579 14.090 Fl 180 1535 ARUBA ISLAND ROY
1536 VE5BX 599 599 14.090 Fl 180 1600 REGINA

For best results, the printing of the log should be done on a line printer with at
least 80 columns that interfaces to the Apple II via one of the peripheral slots 1
through 7.

- NOTES ON THE COMMUNICATIONS PACKAGE SOFTWARE -

 The following notes are included to help answer some questions that you may
have concerning the software.

1) When receiving Morse code, the self-adapting algorithm used, sometimes gets
locked into a very slow or high speed when copying dead carriers or noise.
To clear the routine, type a CTRL-R on the keyboard. This can also be used
to force an “unshift” when receiving Baudot RTTY.

2) You can recover form all known BASIC or DOS errors by typing: “GO TO 0(re-
turn)” to the BASIC prompt: “>”. All important information will be preserved
by reentering either the ‘HAM’ or ‘HAM. LOG’ program, in this manner.

3) For those who wish to change the communications line width to something other
than 72, add these lines:

 3315 INPUT “OUTPUT LINE LENGTH = “,LL
 3316 POKE 3308, LL-2 : POKE 3315, LL-8

4) The files that are written to disk do not necessarily contain CR’s (carriage
returns) in the text. For example, received RTTY would have CR’s, Morse
would not, etc. Each file is written with a CTRL-Z at the end of the file.
These files can be edited by Apple II text editors that do not demand text
containing CR’s.

5) You can convert program listings to text files so that they can be transmitted
on the air. Here’s how to do it:

 1) Load the program to be converted.
 2) Add this line to it:

 32767 PRINT “@OPEN X”:PRINT “@WRITE X”
 LIST 0,32766:PRINT “#”:PRINT “@CLOSE”:END

 (note: @ = CTRL-D and # = CTRL-Z)

 3) Now type: RUN 32767

 This causes a disk file called X to be created with a listing of lines 0 to
32766 in it. This file can be loaded for transmission by using the ‘GET’ com-
mand to place the text in the Xmit buffer.

End of notes.

