ENIAC in Action Book Review

June 22nd, 2017

First of all, let me tell you that I’ve had a hard time writing this review, as I enjoyed reading the book quite a bit, but I think that the book is not for everyone. I really wanted to write that everyone should read this book, as the reader will learn a lot about what happens in new product development, which is more relevant these days, than ever.

Anyway here goes the rest of my attempt of a review.

Eniac in Action by Thomas Haigh, Mark Priestley and Crispin Rope is a different kind of book in some ways. First off, it goes into a significant amount of technical detail. Much of this detail would be hard for a “lay” reader to understand. This is the part that I think may cause problems with some readers. Technical detail aside, where the book really shines is how it describes in detail, the process that it took to create, maintain and eventually enhance ENIAC, a fairly complex implementation of a new technology.

The development of ENIAC was filled with many challenges and obstacles, which the authors describe in a very engaging style. The details of ENIAC development are unique. However, in my opinion, when compared to the process of developmenting other complex systems, there isn’t much that is really different about the ENIAC. That is why I think everyone should read this book. You will get an understanding of just how hard it is to “change the world” with revolutionary new products and systems. Development of complex, new systems are always problematic and take time to sort out. Certain people in the process will get most of the credit and many, many people will be forgotten.

Reading ENIAC in Action will give you a glimpse of one such project. When reading it, keep in mind that there are many engineering teams around the world currently engaged in similiarly daunting tasks.

Early Draft SCELBI HW Construction Manual Available

June 10th, 2017

This is a very early draft. Consider it to be full of errors, so compare to original documents that can be found at scelbi.com, before using. The main reason I’m posting this, is that I have created and added a couple of chapters for assembly of the oscilloscope interface. Any original documentation that existed about the oscilloscope interface has been lost. I still need to create a chapter with technical information on the oscilloscope interface, including a bill of materials, schematics and theory of operation, but this is a good start. I also need to add a section on PCB rework for this interface. The other chapters will also get revised, as I find time, with photographs of the boards and any notes or errata that I have discovered.


SCELBI Front Panel redo in progress

May 27th, 2017
SCELBI Front Panel

SCELBI Front Panel

This SCELBI front panel had some issues, so I decided to remove the existing anodizing, polish out the defects and completely redo it. Removing the anodizing took about an hour. There is a term, “hard anodizing”, and I found out why. It was clear that the anodizing clearly made the surface extra hard. I still need to go over this panel and remove any remaining imperfections before redoing the anodizing. I have a few more panels that I will need to polish out, before taking the batch back to the anodizer for the redo.

A CHM Youtube Video Worth Watching

May 21st, 2017

The CHM’s youtube channel has this video, which caught my attention.


I’ve always been an advocate for the behind the scenes “little guy” that do 90% of the work that really make new products possible. My mom taught me, when I was little, that “words are cheap”. The same can be said for the new ideas that lead to breakthroughs in technology. There is always a foundation for these new ideas and they usually aren’t giant leaps, by themselves, but almost always, incremental steps in understanding.

In my mind, the hard part, isn’t coming up with the idea, but implementing it. In fact, many products are described decades before they can be implemented.

The stories on Andy Hertzfeld’s folklore.org website, demonstrate the hard work that goes into implementation, as well as anything that I’ve ever seen. The thing to understand is that the effort that went into making Macintosh, isn’t unique, but rather the norm for almost all of the gadgets that we take for granted, these days. How do I know this, you may ask? Well, I’ve been involved in new product development for something like 38 years. Some of the products that I have worked on have been failures, but many of them, successful. In either case, it’s always a struggle for those involved. A rewarding struggle when it goes right, but still a struggle.

It seems Thomas Haigh understands this. I’ve ordered his book on Eniac and will write a review after I read it.

Thomas’ comments on Isaacson’s book “The Inovators”, made me pull out Isaacson’s book, “Jobs” and review the sections on Apple 1 and Apple II. I think I understand those products and what went into making them, very well. Thomas’ comments made me want to review the book for faults. I knew that Isaacson had Job’s and Wozniak soldering Apple 1’s, which was incorrect, but wondered what else I would find, if I reviewed those sections. Before I comment on what I found, I will say that I greatly respect anyone that can write such an engaging book, as I don’t have the patience or talent to do it.

Here are the mistakes I managed to find during a quick review of those sections.

  • Page 62: The guy who drew the up the circuit boards didn’t work at Atari. His name was Howard Canton, and he was an independent consultant, who did contract work for Atari and other companies in the valley.
  • Page 67: Woz and the gang didn’t solder Apple 1’s. They were wave soldered in a factory. Assembling the boards really meant stuffing the chips into the factory soldered boards. Daniel Kottke tested the boards, and if they failed, put the failing board in a “bone pile”, that Woz would debug during occasional visits to the Job’s home.
  • Though there are no real mistakes with the Apple II section, there are, in my mind, serious omissions.

  • Page 74: The real problem with the first Apple II PCB layout, was that Howard Canton, instead of doing it himself, had hired someone to do the layout, and that person did a horrible job. The layout was redone digitally, which took, if I remember right, three months.
  • The first Apple II PCB’s didn’t work, do to noise on the address lines that were connected to the DRAM. Rod Holt fixed the problem by adding termination resistors to those lines. This fix was more important than the implementation of a switching power supply. By the time the Apple II was released, switching power supplies had already been in use for 6 or 7 years. In any case, I doubt that use of a linear or switching power supply would have made a great deal of difference in the success or failure of the Apple II. Proof of this, is that the switching power supply is only mentioned in the first Apple II sales brochure, as a one liner in the last page’s technical overview section.
  • Allen Baum had a significant role in developing the monitor for the Apple II, which is not mentioned.
  • Page 84: Though Apple had venture funding, the company was on very shaky financial ground through it’s first year or two. It was not an instant success.
  • In scanning this section, I could find no mention of the Disk II, floppy disk interface. This was a critical item that enabled the success of the Apple II.
  • I understand why Isaacson, in his story, emphasized Job’s interaction with a number of significant personalities. It is a shame that the struggle to develop a new product by a team of talented engineers gets so little “ink”. I also wonder how accurate the depictions of the interactions between the significant personalities really is. It seems that, in terms of the technical stuff that I understand pretty well, Isaacson would grab a fact and elaborate upon it, kind of putting his spin on it, without doing serious fact checking.

    In any case, it’s an entertaining read, that I recommend, in spite of the errors and omissions.

    New (old) Keyboard Design

    May 20th, 2017
    Keyboard Layout

    Keyboard Layout

    Here is the current state of my new parallel ASCII keyboard layout. It is setup to use Cherry key switches and the encoder is a 40 pin AVR micro controller. I plan on making the encoder/controller key mapping configurable through the keyboard itself. It should work nicely as an Apple II/IIplus replacement keyboard, an Apple 1 keyboard, or a more generic ASCII parallel keyboard. The strobe will be configurable as a pulse with configurable duration, requiring an ack, or simply follows state of keypresses. The later mode will only keep strobe active and data output valid while a key is pressed. Like Wendell Sander’s design, the power light doubles as a caps lock key. Note that I plan on making the power/caps lock light configurable to indicate general power/health or caps lock status.

    Due to making configuration through keypresses, most of the solder jumper locations will go away, but I might need to leave the reset option in the layout. I still have a lot of work to do around the micro-controller section plus a lot of design verification. I also intend to retro-ize the traces to make them look more like a hand laid layout that could have been done back in the 70’s.

    In keeping with the original Datanetics rev D., upon which this is based, I may leave out the silk screen layer on the final PCB.

    New SCELBI 8B Video

    May 14th, 2017

    The following link will lead you to a video showing off many of the components of a SCELBI 8B with audio tape, keyboard and oscilloscope interface. It starts with a description of each individual module. Then the components are all “hooked up”. The systems is powered up and some of the capabilities of the SCELBI system are demonstrated.


    A Brief Conversation with Woz

    May 4th, 2017

    During the Apple/Homebrew reunion, having never met him before in person, I briefly introduced myself to Woz as the guy that makes those Apple 1 clones that he always signing. He said, “nice”. He was surrounded by a crowd of people, so I let it be at that, and moved on. At least I had introduced myself.

    Later on, as I was talking to Daniel Kottke, whom I have known for several years, Woz came over and joined us. We talked about that small change that he thought could add a color to the Apple II. I mentioned that I tried to make that change, but couldn’t make it work, right. He said he knew that. I was a little surprised by this reply, since I don’t think I ever reported that I had spent time experimenting making that change, but failed to make it work well. Maybe, I had emailed him my results and then forgot about it, I don’t know.

    Woz also talked about a change he thought he could have made on the Apple II, that would have saved a chip, but required more complicated software in order to implement video support. I’m not sure what that change would be, but I’m thinking that creating an incompatible Apple II to save a chip isn’t anything I’ll be working on, at least in the near future.

    Woz talked about the video system on the Apple 1. He says he copied it from some terminal product, clearing up that point, once and for all. Part of this video system has a rather complicated state machine that implements the carriage return logic. Woz admitted to Daniel and I, that he never understood that logic. In return, I admitted that I never understood it either. Actually, I was probably being a bit humble, as I understand the concept of that circuit, but never completely understood the details of the implementation. I expect he was saying the same thing.

    Woz finally mentioned that there was one part of the Apple II design that didn’t meet timing specs of the chips. He then said that he knew it, but never told anyone. He was counting on the conservative specs of the chips involved from turning this timing violation into a real problem. I think that he was right, as I have never heard of any timing issues on the Apple II, actually causing problems.

    I wonder if Daniel and I were the first to ever hear this confession, as I don’t recall hearing about it, before. Anyway, this confession reveals some of the difficult decisions that design teams, even the best, have to deal with on a daily basis. Sometimes these sorts of decisions come back to haunt us, and sometimes they don’t. The reason that engineers sometimes hold back on reporting latent issues, is that openly reporting issues may cause endless debate within the design team and possible delays on the project. I’m sure that Woz would have reported it, if he thought it was going to be a real issue.

    By the way, I don’t advocate holding back information from your boss, I’m just saying that it does happen and why.

    Meeting Woz in person, was a real pleasure. He is a great guy, exactly the same in person as when on stage or virtually, via email.

    Apple 1 – byte shop numbers

    April 22nd, 2017

    On the back of quite a number of original Apple 1s is scribbled with a felt tip marker, a number, typically 01-00XX. For a long time, it was said that these were supposed to be added by the Byte Shop. A couple of years ago, I ran across a machine purchased from Ray Borill’s Data Domain shop in Indiana, that also had those numbers. This and the fact that the numbers go higher than the 50 that were supposedly sold to the Byte shop made me question the origin of those numbers.

    I had recently heard from a source that Data Domain had purchased machines from the Byte Shop, which could explain how those numbers got on Data Domain computers.

    At last week’s Apple and Homebrew computer club reunion, I happened to start talking to Thom Hogan, who was associated with the Data Domain shop back in the day. I asked him about where they obtained their computers. He said that at some point, they bought Apple 1’s from the Byte Shop, because that Apple would not sell them more computers. They needed more Apple 1’s, because they were selling them into practical applications. They even had one installed at Churchhill Downs, site of the Kentucky Derby. He thought that it was installed near the starting gate for some purpose, though he didn’t exactly remember what it’s function was.

    This explains why the Byte Shop serial numbers could be found on systems purchased from the Data Domain. These two independent sources pretty much remove my uncertainty about the source of the “Byte Shop” numbering.

    How I came to be at the Homebrew/Apple Reunion, LCM+Labs, 2017

    April 16th, 2017

    A few weeks ago, I was invited to a “Homebrew/Apple reunion event” at the Living Computer Museum and Lab. Here is some of the text from the invitation.

    Living Computers: Museum + Labs, founded by Paul G. Allen, would like to invite you to a very special private event.

    We are celebrating the opening of our latest exhibit, which follows the first 20 years of Apple Computers, by throwing a party for those who were there. This is a unique opportunity to reconnect to the people, and computers, that you remember from the start of the personal computer revolution.

    I was given no additional information about who was coming or since I never worked for Apple Computers, even exactly why I was invited. However, without hesitation, I accepted the invitation, and made plans to attend.

    Fast forward a few weeks, to just a few days before the event. Someone noticed a little reported article announcing that a very special Apple 1 was going to be on display at the LCM+lab’s new Apple exhibit and brought the article to my attention. This happened to be the computer that I reported in a blog posting a few years ago, though I never updated my Apple 1 registry with this unit. I didn’t think a whole lot more about it, as I have been involved in communications with many Apple 1 owners over the years.

    I arrived in Seattle on Tuesday afternoon for the Wednesday evening event, still unsure why I was invited, and who else would be there. A small bus picked up about 8 or 9 of us from the Hotel late Wednesday afternoon to take us to the celebration. I could not identify anyone on the bus, though everyone was very friendly and in good spirits.

    When picking up my name tag, I saw an impressive number of familiar names on the tags that hadn’t yet been claimed, including Woz and Paul Allen. Anyway, I introduced myself to a number of people and had some interesting conversations, including a chat with Lāth Carlson, executive director of the museum. However, I still was unsure why I was invited. I was taking the approach of “when in Rome, act like a Roman” – in other words, I was just trying to fit in and not ask too many questions.

    After a bit, we were led through a behind the scenes tour. As we were watching the Bendix vacuum tube computer G-15 being demonstrated, someone that I didn’t recognize, saw my name tag and said “Mike Willegal is here”. The people identified themselves as the Hutmacher family and told me that they had donated the computer to the museum. The donation was kept a secret, which is why I wasn’t told anything. The Hutmacher family had asked the museum to invite me to this celebration, since, with the help of some acquaintances I had with early Apple people, I helped them verify the history of the computer and also pointed out that it belonged in a museum. The mystery of why I was there, was solved.

    The fun part of being identified by the Hutmacher family is that they made a big fuss over me, and some of them had their pictures taken with me. During all this fussing over me, Chris Espinosa, who I had never met and only could identify by the name on his badge, looked on from the background with a puzzled look on his face. I could almost see his brain working – who is this guy that they are making such a fuss over. After the Hutmacher family moved on, I introduced myself to Chris Espinosa and explained what had happened.

    Lastly, kudos to the Hutmacher family, a very special group of people, for putting a very special Apple 1 into very good hands.

    One of WOZ’s Wonder Powers…

    April 13th, 2017

    Do to the acts of an extraordinary generous family, I was invited to a private gathering of micro-computer legends at the “Living Computer Museum” in Seattle, earlier this week. The gathering included a number of people that were involved with the Apple 1 while it was still based out of the Job’s home and others that were involved in the early days of the personal computer revolution. It was a gathering that, as long as my brain is functioning, I will never forgot. During this event, I learned several little stories and will share them in the coming days on this blog. Here is the first story.

    While several of us were admiring the original Apple 1 that will be available to visitors to the museum to use, we discussed how it was being booted with the museum staff. Inevitably, the topic turned to how WOZ used to enter the 4K of BASIC object code by typing hex codes using the Apple 1 monitor. Several of the people there, said they witnessed him do it, and confirmed his amazing prowess at data entry through a keyboard.

    Let me tell you, when I first built an Apple 1 clone, I tried to replicate the feat and gave up after screwing up a few hundred bytes worth of input. This was so difficult for me, that I found it hard to believe that it could be done. At the time, I sent an email directly to Woz to ask him about it. He responded that he did it all the time.

    I can’t find any blog post that reported this exchange. I may have made one or perhaps, I was so dubious, that I decided to file the whole episode away. Anyway, hearing directly from a couple of eye witnesses has eliminated any remaining doubt and I’m rectifying any omissions in faith by making this post.

    I can’t remember hearing about anyone else achieving this, but assume it’s possible. I’ll bet it’s not something that anyone else has done repeatedly. This is a difficult feat, and the fact that WOZ did it repeatadly makes it simply amazing.